Birational Unboundedness of Q-fano Threefolds
نویسنده
چکیده
We prove that the family of Q-Fano threefolds with Picard number one is birationally unbounded.
منابع مشابه
Birational Unboundedness of Fano Threefolds
In this paper, we prove that the family of Fano threefolds with Picard number one is birationally unbounded.
متن کاملOn the Birational Unboundedness of Higher Dimensional Q-fano Varieties
We show that the family of (Q-factorial and log terminal) Q-Fano n-folds with Picard number one is birationally unbounded for n ≥ 6.
متن کاملOn the Anti-canonical Geometry of Weak Q-fano Threefolds, Ii
By a canonical (resp. terminal) weak Q-Fano 3-fold we mean a normal projective one with at worst canonical (resp. terminal) singularities on which the anti-canonical divisor is QCartier, nef and big. For a canonical weak Q-Fano 3-fold V , we show that there exists a terminal weak Q-Fano 3-fold X , being birational to V , such that the m-th anti-canonical map defined by | −mKX | is birational fo...
متن کاملRims-1706 Birational Unboundedness of Log Terminal Q-fano Varieties and Rationally Connected Strict Mori Fiber Spaces
In this paper, we show that (Q-factorial and log terminal) Q-Fano varieties with Picard number one are birationally unbounded in each dimension ≥ 3. This result has been settled for 3-folds by J. Lin and n-folds with n ≥ 6 by the author. We also prove that rationally connected Mori fiber spaces are birationally unbounded even if we fix dimensions of both total and base spaces.
متن کاملProjective Threefolds on Which Sl(2) Acts with 2-dimensional General Orbits
The birational geometry of projective threefolds on which SL(2) acts with 2-dimensional general orbits is studied from the viewpoint of the minimal model theory of projective threefolds. These threefolds are closely related to the minimal rational threefolds classified by Enriques, Fano and Umemura. The main results are (i) the SL(2)-birational classification of such threefolds and (ii) the cla...
متن کامل